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Irradiated Volume in Weissenber~, and Precess ion Techniques 
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Small but systematic correction factors are derived to account for changes in reflection intensities 
due to variations in volume associated with motion of the crystal in the X-ray beam. Cylindrical 
and plane laminar crystals of essentially infinite extent are considered for both Weissenberg and 
precession techniques. 

Introduct ion 

In many crystallographic studies, including analyses 
of crystalline fibers and crystals grown in situ in 
capillaries at low temperature, it is often convenient 
or necessary to make intensity measurements from 
a sample too large to be bathed completely in the 
X-ray beam. Techniques involving moving crystals 
will, in general, introduce errors into these intensity 
measurements since the irradiated volume will not 
be constant for all reflections. If the crystal has the 
shape of a cylinder or plane lamina and is essentially 
infinite in extent, it is possible to reduce the observed 
intensities to a common relative basis. I t  is the 
purpose of this article to present the required correc- 
tion factors for both Weissenberg and precession 
techniques. 

If the axis of a cylindrical X-ray beam intersects 
the axis of a cylindrical crystal of arbitrary radius, 
the volume common to the two cylinders will be a 
function of the common volume when the cylinders 
are perpendicular and, also, of the relative orientation 
of the cylinders. Similarly, the volume common to a 
cylindrical X-ray beam and a plane laminar crystal 
is a function of the common volume when the cylinder 
is normal to the plane and of the orientation of the 
plane relative to the cylinder. 

I t  is convenient to define a unit vector J which, 
in the case of a cylindrical crystal, is coincident with 
the cylinder axis and which, for a plane lamina, 
lies in the plane of the crystal along the normal 
projection of the X-ray beam. The volume common 
to the X-ray beam and the crystal can then be 
written as 

V = V0/sin yJ, (1) 

where y~ is the angle between the X-ray beam and J,  
and V0 is the minimum common volume corresponding 
to normal incidence. In the limit of normal incidence, 
in the case of a plane, y~ is defined as ~/2. 

The orientation of the crystal with respect to the 
camera is specified by two angles. The angle between 
the spindle rotation axis and the crystal cylinder axis 
(or the normal to the plane lamina) is given by ~t, 

where cos A = cos ?~ cos ~'0; in this expression ?~ and yo 
are the changes in setting of the inner and outer 
goniometer arcs required to reduce ~t to zero. The 
rotation of J about the spindle axis is described 
by the angle w, with a fiducial zero set when J lies 
in the plane of the X-ray beam and the spindle axis. 

Weissenberg  m e t h o d  

Calculation of the required intensity correction factor 
for the Weissenberg method at an equi-inclination 
angle /~ is now quite straightforward. From Fig. 1 
it can be seen that  cos~-- cos~ sin/~ + sin~t cos# cosw, 
and from equation (1) the corrected intensity ex- 
pression becomes 

fcorr =/obs sin [cos-1 (cos ~t s in#+sinA cos/~ cosw)]. (2) 

The correction can be calculated for each reflection 
directly from the instrumental settings and the film 
coordinates in a simple computer program. 

X-ray be_a~l 

Spindle axis 

Fig.  1. The  re la t ionship  of J to  the  X - r a y  b e a m  and  the  
spindle axis  for  the  Weissenberg  camera  a t  an  equi- 
incl inat ion angle /~. 

Precess ion  m e t h o d  

The correction factor for the precession method is 
more complex, since the observed intensity is the sum 
of two reflections; one when the reciprocal lattice 
point enters the sphere of reflection and another 
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when i t  leaves. Characterizing these reflections with 
the angles to1 and  tog., equat ion (1) becomes 

V = ½ V o (  1 1 ) 
sin to1 + sin to~ " (3) 

I n  order to calculate the two values of to for a given 
reciprocal lat t ice point,  i t  is convenient f irst  to cal- 
culate the  corresponding values of ff2t, the  angle 
which describes the  rotat ion of the camera about  
the precession axis, and then  to calculate to as a 
func t ion  of tot. 

The precession method is convenient ly  described 
(Waser, 195i) in  terms of three orthogonal coordinate 
systems, all  centered at  the origin of the reciprocal 
lattice. One set of axes, [xl, x2, xs], is f ixed in space 
wi th  the  x3 axis directed upward  along the  vert ical  
camera axis and  the  x~ axis horizontal  in such a way 
tha t  the coordinates of the center of the sphere of 
reflection are [0, 1, 0]. A second set, [yl, yg, ya], moves 
with the reciprocal lattice,  coupled through the 
geometry of the camera so tha t  yl lies in  the x~x~. 
plane and ye is at  a constant  angle fi to xe while 
precessing about  xe. The coordinate t ransformat ion  
is given by  the expression 

cos 0¢ sin c¢ cos fl - sin c¢ sin fl 
X = -- s in c¢ cos c~ cos/3 -- cos c¢ sin/3 Y ,  

0 sin fl cos fl 

where the angles 0¢ and fl are related to the instru-  
menta l  parameters  tot and  fi through the  expressions 

sin 0¢ = sin fi cos to t (1-  sin ~ fi sin s tot)-½ 
cos o¢ = cos/2(1--s in s/2 sin e tot)-½ 
sin fl = s in/2 sin tot 
cos fl = (1--s in  e fi sin s tot)-½. 

The t ransformat ions  

y l = $ c o s v ,  y e = # ,  y a = $ s i n ~ ,  

define the th i rd  useful coordinate set [~, % $]. This 
is a reciprocal lat t ice set direct ly relat ing to f i lm 
coordinates; ~ and  3 are the plane polar radius and 
the az imutha l  angle for a reciprocal latt ice point,  
and ~ is the n th  level coordinate. 

The two required values of tot can now be obtained 

x, 

Fig. 2. The angular  relat ionship be tween  the  X and  Y sets 
of axes for the  precession camera.  

in terms of exper imenta l ly  accessible parameters  by  
t ransforming the coordinates of the  center of the 
sphere of reflection, [0, 1, 0], to the set [~o, ~o, $o] 
and calculating the reflection conditions in terms of 
[~, T,$]. We can write t a n  To = t an  tot cos fi and, 
from the reflection conditions, we f ind tha t  3ten= 
3o + ~, where 

cos ~= (~e+ ~e+2 $ cos/2)/2~ sin/2. 

The required expression which yields the two values 
of tot therefore becomes, 

tan tot = 
t a n  {3___ COS-l[(~2+ $2+25 COS fi)/2~ sin fi]} (4) 

COS /2 

Now, the relat ionship of to to tot mus t  be calculated. 
The angle to between J and the X-ray  beam can be 
obtained from the scalar product  of J wi th  a uni t  
vector along the xe axis, which of course is s imply  
the xe component  of J .  The components of J along 
the x axes can be obtained from the t ransformat ion  
mat r ix  above. In  par t icular ,  the  xe component  
becomes, 

(yl cos tot + y8 cos fi sin tot) sin fi 
xe = - ( 1 -  sin e/2 sin e tot)½ + y2 cos f i ,  (5) 

for which we can write 

to = cos -1 x2 • (6) 

The components of J along the y axes can easily 
be expressed in  terms of the exper imenta l ly  determined 
parameters  2 and  o) : 

yl = cos A 
y2 = sin A cos w 
ys = sin 2 sin a).  (7) 

The expression for the corrected in tens i ty  becomes, 
f rom equat ion (3), 

Ieorr 2Iobs ( e t o  1 ) -1 = + . ( 8 )  
1 sin toe 

This equation can be applied in the following manner .  
From the reciprocal lat t ice coordinates corresponding 
to each reflection, the two values of tot are calculated 
from equat ion (4). These values, along wi th  the 
~ppropriate values from equations (7), determine  
two values of x9 in equat ion (5). The corresponding 
values of to are calculated from equat ion (6) a n d  
inserted into equat ion (8) to yield the  corrected 
intensi ty.  The sequence of operations can easi ly be 
programmed for a smal l  computer .  

Conclusion 

Although the correction factors can be large in  
individual  cases, for the usual  exper imenta l  con- 
dit ions they  average less t han  5 or 10%. While  it  
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might  appear  t h a t  such errors could f requent ly  be 
absorbed in the  r andom errors in in tens i ty  measure- 
ment ,  i t  mus t  be noted  t h a t  t hey  are calculable, 
systemat ic  errors which can generate measurable  
effects upon the  refined structure.  In  a par t icu lar  
case where the corrections were appl ied (Parkes & 
Hughes, 1963), there resul ted not  only an improvement  

in R bu t  also a s ta t is t ica l ly  significant change in the  
structure.  
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Crystals of tri-p-xylylarsine are monoclinic, with four molecules in a unit  cell of dimensions 
a = 10.81, b =33.4, c =5.72 A, f l=96 ° 28', space group P2z/a. The structure has been determined 
from projections along the a and c axes. Within experimental error the molecule has symmetry C a, 
the arsenic being pyramidal with mean C-As-C angles of 102 °, and each ring being rotated about 
its As-C bond, in the same sense, 37 ° from the position it would occupy in an ideal model with 
maximum interaction between the lone pair and the aromatic z-electrons. Overcrowded intramole- 
cular distances are thereby increased to the usual van der Waals separations. Values of the bond 
distances, valency angles and intermolecular contacts have been obtained. 

Introduct ion 

Tri-p-xylylarsine has me thy l  subst i tuents  ortho to the  
arsenic atom, and  its s t ructure  has been inves t iga ted  
for comparison wi th  t h a t  of tr i-p-tolylarsine,  which 
has no ortho subs t i tuents  (Trotter ,  1963). 

E x p e r i m e n t a l  

Crystals of t r i -p-xylylars ine are colourless prisms 
elongated along the  c axis. The dens i ty  was measured 
by  f lo ta t ion  in aqueous potassium iodide, and the  
uni t  cell dimensions and  space group were determined 
from various rota t ion,  oscillation, Weissenberg (CuKa) 
and precession (Mo Ka)  films. 

Crystal data 
Tri-p-xylylarsine,  C2aI-I27As; M = 3 9 0 . 4 ;  m.p. 161 °C. 
Monoclinie, a= 10.81, b =33.4,  c=5 .72  A_; f l = 96  ° 28'. 
Volume of the uni t  ce l l=  2052 A3. 
D~ (with Z = 4 ) = 1 . 2 5 6 ,  D i n = l - 2 4  g.cm -8. 
Absorpt ion coefficients for X-rays,  2 =  1.542 A_, 

# = 24 cm-Z. 
2=0.7107 A_, # =  17 cm -1. 
F(000)--  816. 
Absent  spectra:  hO1 when h is odd, 0k0 when k is 

odd. Space group is P21/a. 

h/c0 (Weissenberg films, Cu Ka) and 0kl (precession 
films, M o K a )  in t ens i ty  da ta  were recorded and 

* Part IX. Camerman & Trotter (1963). 
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Fig. 1. Electron-density projection along the c axis. Contours 
at intervals of 1 e.A -2 (starting at 2) for the C atoms, 
and 5 e.A -~ for the As atom. 

es t imated visually,  and  the s t ructure  ampli tudes  
derived. No absorpt ion corrections were applied, and  
the absolute scale was established later  by correlation 


