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Irradiated Volume in Weissenberg and Precession Techniques
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Small but systematic correction factors are derived to account for changes in reflection intensities
due to variations in volume associated with motion of the crystal in the X-ray beam. Cylindrical
and plane laminar crystals of essentially infinite extent are considered for both Weissenberg and

precession techniques.

Introduction

In many crystallographic studies, including analyses
of crystalline fibers and ecrystals grown ¢n situ in
capillaries at low temperature, it is often convenient
or necessary to make intensity measurements from
a sample too large to be bathed completely in the
X-ray beam. Techniques involving moving crystals
will, in general, introduce errors into these intensity
measurements since the irradiated volume will not
be constant for all reflections. If the crystal has the
shape of a cylinder or plane lamina and is essentially
infinite in extent, it is possible to reduce the observed
intensities to a common relative basis. It is the
purpose of this article to present the required correc-
tion factors for both Weissenberg and precession
techniques.

If the axis of a cylindrical X-ray beam intersects
the axis of a cylindrical crystal of arbitrary radius,
the volume common to the two cylinders will be a
function of the common volume when the cylinders
are perpendicular and, also, of the relative orientation
of the cylinders. Similarly, the volume common to a
cylindrical X-ray beam and a plane laminar crystal
is a function of the common volume when the cylinder
is normal to the plane and of the orientation of the
plane relative to the cylinder.

It is convenient to define a unit vector J which,
in the case of a cylindrical crystal, is coincident with
the cylinder axis and which, for a plane lamina,
lies in the plane of the crystal along the normal
projection of the X-ray beam. The volume common
to the X-ray beam and the crystal can then be
written as

V="Vosiny, (1)

where y is the angle between the X-ray beam and J,
and Vo is the minimum common volume corresponding
to normal incidence. In the limit of normal incidence,
in the case of a plane, p is defined as 7/2.

The orientation of the crystal with respect to the
camera is specified by two angles. The angle between
the spindle rotation axis and the crystal cylinder axis
(or the normal to the plane lamina) is given by 4,
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where cos A=rcos y; cos yo; in this expression y; and o
are the changes in setting of the inner and outer
goniometer arcs required to reduce A to zero. The
rotation of J about the spindle axis is described
by the angle w, with a fiducial zero set when J lies
in the plane of the X-ray beam and the spindle axis.

Weissenberg method

Calculation of the required intensity correction factor
for the Weissenberg method at an equi-inclination
angle u is now quite straightforward. From Fig. 1
it can be seen that cosy=cosA sinu+sini cosy cosw,
and from equation (1) the corrected intensity ex-
pression becomes

Teorr=Iops sin [cos™1 (cos Asin y +sin cosp cosw)]. (2)

The correction can be calculated for each reflection
directly from the instrumental settings and the film
coordinates in a simple computer program.

X-ray beam

Spindle axis

Fig. 1. The relationship of J to the X-ray beam and the
spindle axis for the Weissenberg camera at an equi-
inclination angle u.

Precession method

The correction factor for the precession method is
more complex, since the observed intensity is the sum
of two reflections; one when the reciprocal lattice
point enters the sphere of reflection and another
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when it leaves. Characterizing these reflections with
the angles 1 and ye, equation (1) becomes

! > (3)

sin ye

V=1%Vo (sin ”

In order to calculate the two values of y for a given
reciprocal lattice point, it is convenient first to cal-
culate the corresponding values of (2, the angle
which describes the rotation of the camera about
the precession axis, and then to calculate y as a
function of £¢.

The precession method is conveniently described
(Waser, 1951) in terms of three orthogonal coordinate
systems, all centered at the origin of the reciprocal
lattice. One set of axes, [x1, x2, 23], is fixed in space
with the 3 axis directed upward along the vertical
camera axis and the z; axis horizontal in such a way
that the coordinates of the center of the sphere of
reflection are [0, T, 0]. A second set, [y1, ¥2, ¥s], moves
with the reciprocal lattice, coupled through the
geometry of the camera so that yi lies in the zixe
plane and y» is at a constant angle g to a2 while
precessing about z.. The coordinate transformation
is given by the expression

cosx sinxcosf  —sinwsing
X=|—sinx cosxcosff —cosasinf |Y,
0 sinf cos f3

where the angles « and f are related to the instru-
mental parameters ¢ and i through the expressions

sin & = sin /i cos 2¢(1—sin? g sin2 Qf)~%
cos & = cos ji(l —sin? g sin? Qf)~%

sin B = sin j sin £¢

cos f = (1—sin? 7 sin2 Qf)~%.

The transformations
yi=E&cos T, y2=¢, ys=Esint,

define the third useful coordinate set [&, 7, {]. This
is a reciprocal lattice set directly relating to film
coordinates; & and 7 are the plane polar radius and
the azimuthal angle for a reciprocal lattice point,
and ¢ is the nth level coordinate.

The two required values of £¢ can now be obtained

X

Fig. 2. The angular relationship between the X and Y sets
of axes for the precession camera.
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in terms of experimentally accessible parameters by
transforming the coordinates of the center of the
sphere of reflection, [0, 1,0], to the set [&, To, (o]
and calculating the reflection conditions in terms of
[& 7, C]. We can write tan ro=tan £2fcos @ and,
from the reflection conditions, we find that Tren=
To+ 77, where

cos p=(£2+ {2+2( cos j2)/2&sin @ .
The required expression which yields the two values
of ©t therefore becomes,
tan Qf =
tan {7+ cos—1[(&2+ £2+2( cos 1)/2€ sin @]}
cos i ’

(4)

Now, the relationship of y to £2f must be calculated.
The angle y between J and the X-ray beam can be
obtained from the scalar product of J with a unit
vector along the z: axis, which of course is simply
the x2 component of J. The components of J along
the x axes can be obtained from the transformation
matrix above. In particular, the xz2 component
becomes,

(y1 cos 2¢+ys cos f sin £¢) sin

va = (1 —sin2 ji sin® Qf)}

+ yacos 7, (5)

for which we can write

p=cos~!xs.

(6)

The components of J along the y axes can easily
be expressed in terms of the experimentally determined
parameters A and w:

y1 = cos 4
Yo = sin A cos
ys =sindsinw . (7)
The expression for the corrected intensity becomes,
from equation (3),
1 —1
Ieorr = 210b3< : f > . (8)
siny;  sinye

This equation can be applied in the following manner.
From the reciprocal lattice coordinates corresponding
to each reflection, the two values of £t are calculated
from equation (4). These values, along with the
appropriate values from equations (7), determine
two values of a2 in equation (5). The corresponding
values of y are calculated from equation (6) and
inserted into equation (8) to yield the corrected
intensity. The sequence of operations can easily be
programmed for a small computer.

Conclusion

Although the correction factors can be large in
individual cases, for the usual experimental con-
ditions they average less than 5 or 10%. While it
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might appear that such errors could frequently be
absorbed in the random errors in intensity measure-
ment, it must be noted that they are calculable,
systematic errors which can generate measurable
effects upon the refined structure. In a particular
case where the corrections were applied (Parkes &
Hughes, 1963), there resulted not only an improvement

Acta Cryst. (1963). 16, 1187

1187

in R but also a statistically significant change in the
structure.
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Crystals of tri-p-xylylarsine are monoclinic, with four molecules in a unit cell of dimensions
a=10-81, =334, c =572 A, §=96°28’, space group P2,/a. The structure has been determined
from projections along the a and ¢ axes. Within experimental error the molecule has symmetry C,,
the arsenic being pyramidal with mean C—-As-C angles of 102°, and each ring being rotated about
its As—C bond, in the same sense, 37° from the position it would occupy in an ideal model with
maximum interaction between the lone pair and the aromatic z-electrons. Overcrowded intramole-
cular distances are thereby increased to the usual van der Waals separations. Values of the bond
distances, valency angles and intermolecular contacts have been obtained.

Introduction

Tri-p-xylylarsine has methyl substituents ortho to the
arsenic atom, and its structure has been investigated
for comparison with that of tri-p-tolylarsine, which
has no ortho substituents (Trotter, 1963).

Experimental

Crystals of tri-p-xylylarsine are colourless prisms
elongated along the ¢ axis. The density was measured
by flotation in aqueous potassium iodide, and the
unit cell dimensions and space group were determined
from various rotation, oscillation, Weissenberg (Cu K«)
and precession (Mo K« ) films,.

Crystal data

Tri-p-xylylarsine, CosHorAs; M =390-4; m.p. 161 °C.

Monoeclinic, a=10-81,5=334, c=5-72 A;,b’=96° 28'.

Volume of the unit cell=2052 As.

Dy (with Z=4)=1-256, Dn=1-24 g.cm-3.

Absorption coefficients for X-rays, A=1-542 A,
p=24 cm-L,

A=0-7107 &, =17 cm-1.

F(000)=816.

Absent spectra: R0l when % is odd, 0k0 when £ is
odd. Space group is P2;/a.

hk0 (Weissenberg films, Cu K«) and 0kl (precession
films, Mo K«) intensity data were recorded and

* Part IX. Camerman & Trotter (1963).
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Fig. 1. Electron-density projection along the ¢ axis. Contours
at intervals of 1 e.A~2 (starting at 2) for the C atoms,
and 5 e.A~2 for the As atom.

estimated visually, and the structure amplitudes
derived. No absorption corrections were applied, and
the absolute scale was established later by correlation



